# **APPENDIX J**



# Estimating the Cost of Railhauling Municipal Solid Waste

Prepared by HDR Engineering, Inc.

Alan S. Cohen, Ph. D. Kenneth Briggs Thomas Young

**May 2003** 

#### INTRODUCTION

HDR Engineering, Inc. ("HDR") developed a rail transport economic model (the "Railhaul Cost Model") to estimate the cost of transporting municipal solid waste ("MSW") by rail from an intermodal transfer station to a remote landfill or other disposal destination. As part of the recent New York City solid waste management planning effort, HDR developed this Excel<sup>TM</sup> spreadsheet model to evaluate alternative waste export options, including estimating the potential transportation costs of hauling MSW by rail from New York City to landfills in the southeast United States. HDR adapted the Railhaul Cost Model to estimate railhaul costs from King County to landfills in Arlington, Washington and Boise, Idaho.

HDR obtained the input parameters from several sources as noted in the tables below. HDR gathered information from rail professionals that is listed as 'HDR files'. Sources listed as 'Railroads' indicate data gathered by HDR from various railroad companies, including Burlington Northern Santa Fe (BNSF), Union Pacific Railroad (UPRR), and CSXT Corporation. HDR gathered equipment information from sources listed as 'Manufacturers'.

The methodology and input parameters used in the Rail Cost Model are presented in the following sections. A discussion of the various scenarios modeled by HDR follows. The objective of these scenarios was to define a range of costs (i.e., upper and lower bounds). The results of the model runs are presented in a table that gives annual and per-ton costs.

#### GENERAL METHODOLOGY AND INPUT PARAMETERS

The model uses various input parameters to approximate the cost of rail transport. The model calculates the number of required train sets that is based on the time required to travel from the intermodal facility to the disposal site(s), the annual tonnage of MSW transferred at the intermodal facility and the tonnage capacity of each train. Each train set consists of the locomotives, railcars, and containers. The model then calculates the capital investment required to purchase this rail equipment.

Operation and maintenance costs, based on train set days, are developed and include the labor (train crews) and equipment maintenance necessary for the transport operation. A corporate profit, calculated as a percentage of total operating and maintenance costs, is also included in the railhaul costs. It is assumed that profits are not added to equipment leasing (or purchasing, rather a rate of return is implicit in the assumed cost of capital.



Page 2 May 2003

Each scenario is defined by the case-specific input parameters. Key input parameters used to estimate the railhaul costs for King County are given below:

# **Waste Stream Projections**

| Parameter                                   | Amount    | Unit | Source      |
|---------------------------------------------|-----------|------|-------------|
| Annual tonnage of MSW (2012)                | 1,098,500 | Tons | King County |
| Annual tonnage of MSW (2030)                | 1,250,000 | Tons | King County |
| Available days/year (Facility)              | 312       | Days | King County |
| Avg. load per container (Compacted onsite)  | 35        | Tons | King County |
| Avg. load per container (Compacted offsite) | 27        | Tons | King County |

# **Rail Operations**

| Parameter                 | Amount | Unit              | Source    |
|---------------------------|--------|-------------------|-----------|
| Available days/year       | 312    | Days              | Railroads |
| Cycle time (Arlington)    | 3      | Days              | Railroads |
| Cycle time (Boise)        | 6      | Days              | Railroads |
| Maximum unit train length | 6000   | Feet              | Railroads |
| Containers per railcar    | 2      |                   | Railroads |
| Shift crew size           | 2      |                   | Railroads |
| Road crews required       | 4      |                   | Railroads |
| Fuel consumption          | 8      | gallons/hour/unit | Railroads |
| Fuel consumption          | 3      | miles/gallon      | Railroads |

# **Disposal Site**

| Parameter                      | Amount | Unit  | Source    |
|--------------------------------|--------|-------|-----------|
| Round trip mileage (Arlington) | 626    | Miles | Railroads |
| Round trip mileage (Boise)     | 1336   | Miles | Railroads |



Page 3 May 2003

# **Equipment**

| Parameter                                                                        | Amount | Unit              | Source        |
|----------------------------------------------------------------------------------|--------|-------------------|---------------|
| Container tare weight                                                            | 3.75   | Tons              | Manufacturers |
| Railcar weight                                                                   | 27     | Tons              | Manufacturers |
| Railcar length                                                                   | 71.67  | Feet              | Manufacturers |
| Locomotive length                                                                | 75     | Feet              | Manufacturers |
| Maintenance locomotive                                                           | 1.0%   |                   | Manufacturers |
| Maintenance railcars                                                             | 1.5%   |                   | Railroads     |
| Maintenance containers                                                           | 2.0%   |                   | Railroads     |
| Spare locomotive multiplier                                                      | 10%    |                   | Railroads     |
| Spare flatcar multiplier                                                         | 30%    |                   | Railroads     |
| Spare container assumption                                                       | 2      | Per railcar spare | Railroads     |
| Number of locomotives per train set (Arlington & Boise and < 5800 trailing tons) | 3      |                   | Railroads     |
| Number of locomotives per train set (Boise and > 5800 trailing tons)             | 4      |                   | Railroads     |

# **Costs/Financing**

| Parameter                             | Amount      | Unit           | Source        |
|---------------------------------------|-------------|----------------|---------------|
| Crew cost per day (each)              | \$500       |                | Railroads     |
| Railroad markup                       | 15%         |                | Railroads     |
| Fuel cost                             | \$.90       | dollars/gallon | HDR Files     |
| Term of loan                          | 20          | years          | HDR Files     |
| Interest rate                         | 8.00%       |                | HDR Files     |
| Unit train efficiency savings         | -5%         |                | Railroads     |
| Switching - unit train assembly costs | \$50        | per railcar    | Railroads     |
| Cost per container                    | \$10,000    |                | Manufacturers |
| Cost per railcar                      | \$55,000    |                | Manufacturers |
| Cost per locomotive                   | \$2,000,000 |                | Manufacturers |

The major assumptions used in the analysis are:

• The two "average tons per container" parameters (i.e., 27 and 35 tons) reflect the two alternatives (with or without compaction on-site) that King County is considering;



Page 4 May 2003

- The train cycle time is the number of days required for a train to be assembled at the intermodal facility or switchyard, hauled to the disposal site, unloaded at the disposal site, and returned to the intermodal facility; and
- Multiple train sets may be required to ensure continuous operation takes place at the intermodal facility. In other words, while one or more train sets are being hauled to the disposal site, another train set is being assembled at the intermodal facility.

The maintenance and equipment spares input parameters reflect typical railroad industry percentages that allow for sufficient slack in the system for regular maintenance and unplanned break-downs. The unit train efficiency factor represents the cost advantages that the railroad expects to realize if the MSW is transported in full unit trains rather than being integrated with other freight traffic.

The capital costs include the cost of the locomotives, railcars, and containers. Dollars are in 2003 real values. HDR assumed that the railroad would purchase or lease this equipment at an effective 8% interest rate. This reflects a blend of debt and equity.

#### **SCENARIOS MODELED**

HDR developed eight (A-H) scenarios for the first and last years (2012 and 2030) of the planning horizon, which produced 16 total scenarios. The two years were chosen to account for increased growth in King County and the resulting increase in MSW generated. The following are the scenarios simulated for both 2012 and 2030:

| Scenario | Disposal Site | Train Departure Schedule | Tons per Container |
|----------|---------------|--------------------------|--------------------|
| A        | Arlington     | Daily                    | 27                 |
| В        | Arlington     | Only When Full           | 27                 |
| С        | Arlington     | Daily                    | 35                 |
| D        | Arlington     | Only When Full           | 35                 |
| Е        | Boise         | Daily                    | 27                 |
| F        | Boise         | Only When Full           | 27                 |
| G        | Boise         | Daily                    | 35                 |
| Н        | Boise         | Only When Full           | 35                 |

The term "only when full" when referring to the train schedule refers to a scenario where a train is kept at the facility until the maximum amount of railcars have been assembled. The maximum train length for all scenarios modeled was determined to be 6000 feet that provides for 80 or 81 railcars, depending on whether a fourth locomotive is required. A fourth locomotive is required



Page 5 May 2003

for the haul to Boise, if the trailing weight is greater than 5800 tons. Since an additional locomotive is required, the train must have one less railcar (80).

As part of this project, HDR did not run railhaul simulations that consider the impact of any number of train dispatch schedule constraints. However, HDR selected two dispatching scenarios, the "daily" and "only when full" scenarios, that are likely the upper and lower bounds, respectively, of the cost impacts of any such dispatch schedule constraints.

#### **RESULTS**

The estimated railhaul costs of transporting MSW from the intermodal site to the two landfills for various assumptions are presented in the following tables:

# **Destination:** Arlington

| Train Leaving Daily |              |              |              |              |  |  |
|---------------------|--------------|--------------|--------------|--------------|--|--|
| Year 2012 Year 2030 |              |              |              |              |  |  |
|                     | 27 tons/cont | 35 tons/cont | 27 tons/cont | 35 tons/cont |  |  |
| Per ton             | \$8.63       | \$7.75       | \$8.07       | \$7.14       |  |  |
| Per year            | \$9,480,000  | \$8,520,000  | \$10,100,000 | \$8,930,000  |  |  |

| Train Leaving Only When Full |              |              |              |              |  |
|------------------------------|--------------|--------------|--------------|--------------|--|
| Year 2012 Year 2030          |              |              |              |              |  |
|                              | 27 tons/cont | 35 tons/cont | 27 tons/cont | 35 tons/cont |  |
| Per ton                      | \$8.61       | \$6.24       | \$8.07       | \$7.13       |  |
| Per year                     | \$9,460,000  | \$6,850,000  | \$10,100,000 | \$8,910,000  |  |

# Destination: Boise, Idaho

| Train Leaving Daily |              |              |              |              |  |
|---------------------|--------------|--------------|--------------|--------------|--|
| Year 2012 Year 2030 |              |              |              |              |  |
|                     | 27 tons/cont | 35 tons/cont | 27 tons/cont | 35 tons/cont |  |
| Per ton             | \$13.86      | \$12.55      | \$14.16      | \$12.77      |  |
| Per year            | \$15,200,000 | \$13,800,000 | \$17,700,000 | \$16,000,000 |  |

| Train Leaving Only When Full |              |              |              |              |  |
|------------------------------|--------------|--------------|--------------|--------------|--|
| Year 2012 Year 2030          |              |              |              |              |  |
|                              | 27 tons/cont | 35 tons/cont | 27 tons/cont | 35 tons/cont |  |
| Per ton                      | \$13.68      | \$10.87      | \$14.24      | \$11.47      |  |
| Per year                     | \$15,000,000 | \$11,900,000 | \$17,800,000 | \$14,300,000 |  |



Page 6 May 2003

There are several variables that drive the results outlined above:

- Increased travel time (or distance) to the disposal locations increases costs of operation, maintenance and equipment necessary (due to increased number of train sets);
- Increased compaction of MSW results in a decreased per-ton cost of transport, due to the greater efficiency of hauling more waste on each train; and
- Costs would be reduced for the scenarios where trains leave only when full. This is again the result of increased amounts of waste being hauled during each train trip, thereby decreasing the total number of train sets required.

The costs are not linearly related between the 27-ton per container and 35-ton per container scenarios. Non-linearity results from the occurrences of thresholds for determining when additional train sets are required. The additional train set may be underutilized, though it would still be necessary to have the equipment on-hand for continuous operations.

Finally, it is important to also note that the results above calculate only the rail transport costs for a generic set of scenarios. Market conditions including the competition among railroad companies will affect the actual cost of railhauling MSW.



Page 7 May 2003